Ultramid[®] A3X2G7 Polyamide 66

Email PDF Datasheet | Print/Save Version

Product Description

Ultramid A3X2G7 is a 35% glass fiber reinforced injection molding PA66 grade with improved flame retardance and enhanced long-term stability. Flame retardant based on red phosphorus; very high stiffness and strength; outstanding mechanical and electrical properties.

PHYSICAL	ISO Test Method	Property Value	
Density, g/cm³	1183	1	.45
Mold Shrinkage, parallel, %	294-4	0	.34
Mold Shrinkage, normal, %	294-4	1.14	
Moisture, %	62		
(50% RH)		1.0	0-1.4
(Saturation)		4.4	4-5.0
RHEOLOGICAL	ISO Test Method	Dry	Conditioned
Melt Volume Rate (275 °C/5 Kg), cc/10min.	1133	25	-
MECHANICAL	ISO Test Method	Dry	Conditioned
Tensile Modulus, MPa	527		
23°C		11,000	8,500
Tensile stress at break, MPa	527		
23°C		160	120
Tensile strain at break, %	527		
23°C		3.0	4.0
Flexural Modulus, MPa	178		
23°C		9,200	-
IMPACT	ISO Test Method	Dry	Conditioned
Izod Notched Impact, kJ/m ²	180		
23°C		13	20
Charpy Notched, kJ/m ²	179		
-30°C		10	<u>-</u>
23°C		14	- 18
	179	14	10
Charpy Unnotched, kJ/m ²	179	0.5	
-30°C		65	-
23°C	IOO Took Maddand	70	70
THERMAL Malita Point 10	ISO Test Method	Dry	Conditioned
Melting Point, °C	3146	260	-
HDT A, ° C	75	250	-
HDT B, ° C	75	250	-
Coef. of Linear Thermal Expansion, Parallel, mm/mm °C		0.17 X10-4	-
Coef. of Linear Thermal Expansion, Normal, mm/mm °C	ISS Tool Mallood	0.65 X10-4	-
ELECTRICAL	ISO Test Method	Dry	Conditioned
Comparative Tracking Index	IEC 60112	600	-
Volume Resistivity (Ohm)	IEC 60093	1E13	1E10
Dielectric Constant (1 MHz)	IEC 60250	3.6	5
Dissipation Factor (1 MHz)	IEC 60250	200	2,000
Dielectric Strength, KV/mm	IEC 60243-1	33	30
UL RATINGS	UL Test Method	Proper	rty Value
Relative Temperature Index, 0.4mm	UL746B		45
Mechanical w/ Impact, °C		115 110	
Electrical, °C	111.04	V-0	
Flammability Rating, 0.75mm	UL94		V-U
Relative Temperature Index, 0.75mm	UL746B		20
Mechanical w/o Impact, °C		130	
Mechanical w/ Impact, °C		115	
Electrical, °C	111.04	115	
Flammability Rating, 1.5mm	UL94	\	V-0
Relative Temperature Index, 1.5mm	UL746B		00
Mechanical w/o Impact, °C			30
Mechanical w/ Impact, °C		115 115	
Electrical, °C	111.24	115	
Flammability Rating, 3.0mm	UL94		V-0
Relative Temperature Index, 3.0mm	UL746B		
Mechanical w/o Impact, °C			30
Mechanical w/ Impact, °C			15
Electrical, °C		1	15
Processing Guidelines			
Frocessing Guidelines			

Material Handling

Max. Water content: 0.05%

Special handling and safety precautions must be used when processing this grade of material. Please contact your BASF Technical Service Representative for details. Product is supplied in moisture barrier packaging. However, further drying is typically required. A dehumidifying or desiccant dryer operating at 80°C (176°F) is recommended. Drying time is dependent on moisture level, however 2-4 hours is generally sufficient. Further information concerning safe handling procedures can be obtained from the Safety Data Sheet. Alternatively, please contact your BASF Technical Service representative.

Typical Profile

Melt Temperature 285-300°C (545-572°F)
Mold Temperature 80-90°C (176-194°F)
Injection and Packing Pressure 35-125 bar (500-1500 psi)

Mold Temperatures

This product can be processed over a wide range of mold temperatures; however, for applications where aesthetics are critical, a mold surface temperature of 80-95°C (176-203°F) is required.

Pressures

Injection pressure controls the filling of the part and should be applied for 90% of ram travel. Packing pressure affects the final part and can be used effectively in controlling sink marks and shrinkage. It should be applied and maintained until the gate area is completely frozen off.

Back pressure can be utilized to provide uniform melt consistency and reduce trapped air and gas. Minimal back pressure should be utilized to prevent glass breakage.

Fill Rate

Fast fill rates are recommended to ensure uniform melt delivery to the cavity and prevent premature freezing. Surface appearance is directly affected by injection rate.

Note

Although all statements and information in this publication are believed to be accurate and reliable, they are presented gratis and for guidance only, and risks and liability for results obtained by use of the products or application of the suggestions described are assumed by the user. NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH. Statements or suggestions concerning possible use of the products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that toxicity data and safety measures are indicated or that other measures may not be required.

BASF Corporation Engineering Plastics 1609 Biddle Avenue Wyandotte, MI 48192 General Information: 800-BC-RESIN

Technical Assistance: 800-527-TECH (734-324-5150) Web address: http://www.plasticsportal.com/usa

